Recently published in Harvard Business Review.   After explaining the shortcomings of traditional planning systems, the authors describe their new approach, optimal machine learning (OML). A central feature is its decision-support engine that can process a vast amount of historical and current supply-and-demand data, take into account a company’s priorities, and rapidly produce recommendations for ideal production quantities, shipping arrangements, and so on. The authors explain the underpinnings of OML and provide concrete examples of how two large companies implemented it and improved their supply chains’ performance.